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1 Introduction

O ur life are becoming more and more dependent on technology and products produced out of
technological development. The use of mobile phones, tablets, computers and laptops, software

services like the email and social networking sites, online bank transactions, online shopping sites such
as flipkart, amazon, ebay, e.t.c., and many more have become our daily needs. We can sense that this
human dependence on technology is going to increase in the future. These dependence on technology
compels us to establish their correctness or perfectness. Imperfections can only be tolerated to some
extent for applications which are not so critical but not otherwise. Eg., we can tolerate if the text editor
fails to retain the format last saved or an operating system in our laptop crash when an audio player
is run or an email sent to one person ends up in the inbox of someone else, but we cannot tolerate
slightest error in, for example, the Traffic Alert and Collision Avoidance System for air traffic( or
train traffic) control which might lead to a collision. In fact, we are becoming less and less tolerant
regarding errors in technology.

For example, a large number of lives and property loss or damage has already been incurred in
airplane accidents (for instance Air France Flight 447: 12 crew members (3 flight crew, 9 cabin
crew) and 216 passengers, from thirty-two nationalities on board were killed), due to hardware and
software design error as reported in (http://www.bea.aero/en/enquetes/flight.af.
447/flight.af.447.php). The details of the accident is elaborated in detailed in wikipedia ti-
tled “Air France Flight 447”. Thus, safety verification of such critical system is an utmost concern.
Such incidents urges the importance of design specification and design validation before the deploy-
ment of such critical system.

To overcome these technological imperfection in critical systems formal methods is a must. For-
mal methods are mathematical techniques for the specification, development and verification of soft-
ware and hardware systems. The goal of formal methods is to contribute to the reliability and robust-
ness of a software or hardware system. The application of formal methods in real world is increasing
and with the recent development of powerful tools which are scalable, the future looks brighter for
formal methods based techniques in design validation.

Simulation, testing and deductive verification are traditional approaches to gain greater confidence
on systems[1]. While simulation is carried out on the model of a design, testing is performed on
the actual design itself. Deductive reasoning is a mathematical proof system where correctness of
systems are proved with axioms and proof rules. We know that simulation and testing are inadequate
in establishing total confidence of the design under validation because they are not exhaustive checks.
Deductive verification can be extremely expensive at times

Model checking is an automatic technique for verifying finite state systems. The procedure nor-
mally uses an exhaustive search of the state space of the system to determine if a specification is
true or not. There are broadly two types of system properties those are checked with model checking
algorithms, namely safety properties and liveness properties[1].

Safety properties are properties which specify that nothing bad occurs.
Liveness properties are properties which specify that something good eventually occurs.
There are model checking algorithms which are reasonably efficient and allows for its automation.

Infinite state systems can also be model checked with abstractions which constructs finite symbolic
states from the infinite state space.

Model checking, however, suffers from the state space explosion problem [2, 3, 4, 5]which arises
due to the exponential increase in the number of explicit states of a system. State space explosion
problem can be tackled to some extent with model abstractions, use of efficient data structures,
heuristics and symbolic representation of states[1].

As mentioned in [1], applying model checking for design validation mainly involves three steps:
(1) Modeling, (2) Specification and (3) Verification. Modeling is the process of formalizing a design
with a mathematical model. A model is sometimes abstracted to hide unnecessary details and to make
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it within analysis limits and trying to cope with the state space explosion problem. Specificationmeans
formally stating the properties that the design must satisfy. Verification is the process of automatically
checking if the given specifications are satisfied by the design under validation. If a specification is
found to be violated, a counter example is expected to be returned by the model checking algorithm
showing the design behavior that violated the given specification.

Some examples ofmodel checkers available today are SPIN[6], UPPAAL[7], Kronos[8], HyTech[9],
PHAVer[2] and SpaceEx[10]. SPIN is a model checker for distributed software systems against Lin-
ear Temporal Logic (LTL) specifications. UPPAAL is a model checker for real time systems modeled
with timed automata. Kronos is similarly a model checker for real time systems modeled with timed
automata against TCTL (Timed Computation Tree Logic) specifications. HyTech and PHAVer are
model checkers for hybrid systemsmodeled as linear hybrid automata. SpaceEx, a new extensible ver-
ification platform for hybrid systems, developed with systematic software engineering, and featuring
a web-based graphical user interface.

1.1 Hybrid Systems
Hybrid systems is a combination of two complementary units - the computational unit and the physical
unit. The computational unit is the discrete systemwhere as the physical unit is the continuous system.
This systems currently referred to as cyber-physical-systems (CPS) [11].

Though the emphasis tends to be more on the computational units, but the hybrid systems works
as a feed-back loop between the computational and physical units and vice-versa. The computational
unit in a hybrid systems usually drives the physical system.

The Hybrid systems is also referred to as embedded systems, it has a large area of applications,
where the physical system is generally controlled by the computational system in a feed-back loop.
Some of the day-to-day applications are refrigeration in supermarkets, air conditioning systems in
buildings, automatic gear controlling systems in automobiles, aerospace, chemical processes, etc.

1.2 Hybrid Automata
Hybrid systems are modelled by hybrid automaton. A hybrid automaton as stated in[12] is an finite
state machine which consists of a number of state representing a mode or finite sets of real-valued
variables comprising of discrete states. These state or modes are linked by annotation (labeling) with
constraints that specify the continuous evolution of the system, also the link between the modes are
annotated with guards (or barriers) that determine the discrete transitions condition. The discrete tran-
sitions or jumps changes the continuous dynamics and modify the values of the continuous variables.
The jumps only take place when the values of the variables attains a certain limit, called guard.

The hybrid automaton can be mapped to a graph, where states are vertices or nodes of the graph
and linked annotations are the edges of the graph. The system may only remain in a particular state
as long as the variable values are in a range called invariant associated with the state.

Formally, a hybrid automaton H = (Loc, V ar, Lab, Trans, F low, Inv, Init) consists of the
following elements:

• vertices, called locations, are given by a finite set Loc, and whose edges, called discrete transi-
tions, are given by a finite set Trans;

• a finite set of real-valued variables V ar . A state of the automaton consists of a location and
a value for each variable (formally described as a valuation over V ar ). The set of all states of the
automaton is called its state space. To simplify the presentation, we assume that the state space is
Loc × Rn, where n is the number of variables. We will also simply write x to denote the name of
the variable x or its value according to the context;

• for each location, the variables can only take values in a given set called invariant. The invariant
is given by Inv ⊆ Loc × Rn;
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• for each location, the change of the variables over time is defined by its time-derivative that must
be in a given set Flow ⊆ Loc × Rn × Rn. For example, if the system is in a location l , a
variable x can take the values of a function ξ(t) if at each time instant t , (l, ξ̇(t), ξ(t))∈Flow , where
ξ̇(t) denotes the derivative of ξ(t) with respect to time;

• the discrete transitions Trans ⊆ Loc × Lab × 2R×R × Loc specify instantaneous changes
of the state of the automaton. A transition

(
l, α,µ, l′

)
signifies the system can instantaneously jump

from any state(l, x)to any state
(
l
′
, x

′) if x′ ∈ Inv(l
′
) and

(
x, x

′) ∈ µ . Every transition has a
synchronization α ∈ Lab that is used to model the interaction between several composed automata.
Intuitively, if two automata share a common α, transitions with this can only be executed in unison,
i.e., by simultaneous execution of a transition with this label in both automata. The relation µ is called
the jump relation of the transition;

• A set of states Init ⊆ Loc × Rn specifies the initial states from which all behavior of the
automaton begins.

1.3 Reachability Analysis of Hybrid Systems
Safety verification is the verification of functional correctness of the system. Safety verification is the
process of finding if any trajectories emerging from the given initial configuration of a mathematical
model of the system passes or intersects an unsafe or bad states of that system. So, safety verification
includes the process of computing all the possible behaviours or states that hybrid systems may pass
through and checking if there exists an unsafe/unwanted behaviour or state.

This technique of computing and checking exhaustively all the possible states of the system or
model is used in the model checking algorithms[3].

An algorithmic approach[13], based on the computation of the reachable set, has emerged from
hybrid systems research. A reachable set consists of all the states that can be visited by a trajectory of
the hybrid systems starting from a specified set of initial states. A trajectory[1] is the path constituting
all the states starting from the initial state that the system can take under its dynamics.

If the size of the initial state is infinite and the trajectories are non-deterministic, then the computa-
tion of all the reachable set is a challenge. Hence, there is a great scope for research in this directions.

Methods developed so far in these area for computation of reachable set are limited to small time
bound as the amount of time taken to compute all the reachable states of any hybrid systems is hard.
A number of approaches are going on in order to increase the process of computing reachability set
as mentioned in the paper [13].

One of the well-know model checking tool available today, SpaceEx (http://spaceex.imag.fr )[10]
is consider to take much less time then many others, but even such a tool chokes for high dimensional
hybrid systems such as a helicopter controller model when supplied with a fairly large time bound for
the computation of its reachable states.

6



2 Review of literature

2.1 Reachability Analysis
Reachability analysis concerns the computation of the system’s reach set, the set of reachable states in
the state space from a given set of initial states. A trajectory[1] of a dynamical system can be computed
with numerical simulations for a given initial state and input using numerical integration. Simulation is
efficient for design validation to a certain limit. There are simulators available for dynamical systems
such as the MATLAB Simulink for model based development of complex systems, simulations can
also provide the designers with an overall idea of the reachable set by choosing some wise start points
like the boundary values of the initial set. However, simulations in general cannot guarantee safety or
liveness properties. Reachable set on the other hand if computed can guarantee safety.

A hybrid automaton consists of potentially infinite number of states. Algorithmic analysis need a
finite representation of the infinite state space and that is done through symbolic state representation.
A symbolic state is a pair of a discrete set and a continuous set. The discrete set is a set of state
locations and the continuous set gives the value of the continuous variables of the hybrid systems in
that location(s).

Reachability computation is a process of searching exhaustively all symbolic states till the fix-point
has reached and if the fix-point does not exist, then bounded reachability can be computed which is
computing all reachable states within a fix time bound T.

R(T ) = {x ϵRn|∃x0ϵI, tϵ[0, T ] such that Πx0(t) = x}

where I is the initial set and Πx0(t) denotes the state of the trajectory initiated from x0 at time t.
We, are also interested in the states of the system between a time interval which is defined as

follows:

R(t1, t2) = {x ϵRn|∃x0ϵI, tϵ[t1, t2] such that Πx0(t) = x}

The reachability problem of a hybrid automaton H is to compute all the reachable set of a trajectory
which begins from the initial valuex0 and ends in xf . Inmost of the cases the reachable set is infeasible
to compute and the exact reachablilty analysis is an undecidable problem. So, researchers compute
this undecidable system by implementing an over-approximation technique[4, 14, 15] to compute the
reachable set. As the over-approximated reachable set will include all the reachable set plus some
finite extra set so as to be sure that the trajectory will not exclude the actual reachable path. It is then
checked if this over-approximated set is safe, i.e., it does not intersect with the bad set. An over-
approximated set Zover contains more states than the model actually reaches, i.e., R ⊆ Zover. Safety
of the over-approximated set implies the safety of the design under validation, as it overly include
all the reachable states plus some extra states which may not be reachable. If there is an intersection
of the over-approximated set with the bad set say F , then the system is unsafe, which may not be
true in all cases in actual. Mathematically, if Zover ∩ F = ∅ then that system is safe. The process
of over-approximating certainly helps in two aspects. Firstly, it makes sure that no bad states of the
reachable sets are left in computation which guarantees the proper verification of any system’s safety.
Secondly, it helps in converting the problem of computation of all actual reachable sets from infeasible
to feasible.
There have been a number of methods undertaken in order to compute reachablity set as described in
the papers [1, 16, 17, 18, 19, 20, 15]. Some of these methods are described in brief in the following
sections.
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2.2 Existing work on computing reachability Set
2.2.1 Support Functions

Defining Support Functions
The support function can be computed for any convex set as described in [15, 14]. Support function

can be used to compute the reachability set and in turn be used for reachability analysis of a hybrid
systems. The support function of any compact convex set Ω ⊆ Rd, denoted by ρΩ, is defined as :

ρΩ : Rd → R
l 7→ maxxϵΩ (l · x)
Also, the support vector of a compact convex set Ω ⊆ Rd, in the direction of l ⊆ Rd, is denoted

by vΩ,l, is a vector of Rd such that:
vΩ,lϵΩ and l · vΩ,l = ρΩ(l).
Generally, the support vector of Ω in any direction l is not always unique, as if we take the normal

perpendicular to the direction l, then all the points on the normal/line perpendicular to the direction l is
the result of the support function. It is to be noted that a compact convex set Ω is uniquely determined
by its support function as the following equality holds:

Ω = ∩ℓϵRdxϵRd : l · x ≤ ρΩ(l). (1)

Where ℓ ∈ Rd and ℓ1, ℓ2, ..., ℓr is uniformly distributed through out the convex set. From equation
(1), it is easy to see that a tight polyhedral over-approximation of an arbitrary compact convex set can
be obtained by “sampling” its support function uniformly distributed over ℓ as described in [15, 14].

If Ω is a compact convex set and ℓ1, ℓ2, ..., ℓr be arbitrary chosen vectors, then the halfspaces Hi,
is denoted as

Hi = x∈Rd : ℓi·x≤ρΩ(ℓi), i = 1, ..., r. (2)

Thus, a polyhedron can be defined by the intersection of all these halfspaces of equation (2) i.e.,
Ω̃ = ∩r

i=1 Hi as stated in the paper [15, 14]. Then, Ω ⊆ Ω̃ and the process result in a tight over-
approximations as Ω touches the faces of Ω̃ at points vΩ,l1 ,vΩ,l2 , ..., vΩ,lr . Using support vectors and
support function reachability of most of the classes of sets can be easily computed.

If A is any matrix and U, V ⊆ Rd be any compact convex sets, and all non-zero vectors l ∈ Rd,
then some of the well-known properties of support function are as follows:

ρCH(U,V )(l) = max(ρU(l), ρV (l))
ρU⊕V (l) = ρU(l) + ρV (l)
ρAU(l) = ρU(A

T l)
where CH(U,V) denotes the convex hull of U and V.

Using these properties, unusual convex sets can also be easily consider for the computation of
reachability analysis as described in the papers [15, 14].

Reachability computation of Discrete-Time systems using Support Functions
A discrete-time linear system of the form:

xk+1 = Axk +Bvk, x0ϵI, vkϵV (3)

where I ⊆ Rd and V ⊆ Rd are compact convex sets. Now if we denote the convex sets by Ωk

the subset of states reachable at time k. The reachable sets of a hybrid system within a limited time
boundN , is the sequence of sets Ω1,Ω2, ...,ΩN as described in [14]. Thus, the recurrence relation can
be computed as shown in equation (4) below:

Ωk+1 = AΩk ⊕ V, Ω0 = I (4)
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Finally, for computing all the sequences of over-approximated reachable setsΩk, for k = 0, ..., N ,
with arbitrary chosen vectors li ∈ Rd, for all i = 1, ..., r is given by the equation (5) as described in
[14] is:

ρΩk
(l) = ρI((A

T )kl) +
k−1∑
i=0

ρV ((A
T )il) (5)

Using the equation (5) the reachability sets can be computed as shown in the Algorithm 1. The
Algorithm 1 computes the support functions ρΩ0 , . . . , ρΩN

.

Algorithm 1 Computation of support functions ρΩ0 , . . . , ρΩN
.

Input: The matrix A, the support functions ρI and ρV , the vector l and an integer N .
Output: Yk=ρΩk

(l) for k in 0, ..., N

r0 ← l

S0 ← 0

Y0 ← ρI(r0)

for k from 0 to N − 1 do

rk+1 ←AT rk

sk+1 ←sk +ρV (sk)
Yk+1 ←ρI(rk+1)+sk+1

end for

return Y0, ..., YN

2.2.2 Zonotopes

Defining Zonotopes
Zonotopes are a special class of convex polytopes. A zonotope is a Minkowski sum of a finite set

of line segments. As defined in [16], a zonotope Z is a set such that:

Z =

{
x∈Rn : x = c+

i=p∑
i=1

xigi,−1 ≤ xi≤1

}
(6)

where c, g1, ..., gp are vectors of Rn.We note Z = (c,< g1, ..., gp >). Thus, a zonotope is a polytope.

(a) Cube (b) Hexago-
nal Prism

(c) Trun-
cated
Octahedron

Figure 1: Zonohedrons with 3,4 and 6 generators respectively.
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A zonotope Z = (c,< g1, ..., gp >) is always centrally symmetric and that the point c ∈ Rn is the
center of Z. The collection of vectors g1, ..., gp is called the set of generators of Z. The figure (1) an
extract from wikipedia titled “Zonohedron” shows a list of zonotopes and the number of generators
for each of them. For a zonotope with p generators in Rn, the value of p/n is called the order of the
zonotope. For instance, a parallelepiped is a zonotope of order 1. The equation (6) gives an efficient
representation of the set since the number of faces of a zonotope inRn with p generators is inO(pn−1).
In the paper [16] states that there are two important properties that motivates the use of zonotopes for
over-approximating the reachable sets of any uncertain linear systems. They are as below:

1. Zonotopes are closed under linear transformation. Let L be a linear map and Z = (c,<
g1, ..., gp >) a zonotope,

LZ =

{
Lx∈Rn : x = c+

i=p∑
i=1

xigi,−1 ≤ xi≤1

}
(7)

Thus, LZ = (Lc,< Lg1, ..., Lgp >). The image of a zonotope by a linear map can be computed
in linear time with regard to the order of the zonotope.

2. Zonotopes are closed under Minkowski sum. If Z1 = (c1, < g1, ..., gp >) and Z2 = (c2, <
h1, ..., hq >) are two zonotopes, then,

Z1 + Z2 = (c1 + c2, < g1, ..., gp, h1, ..., hq >). (8)

Thus, the Minkowski sum of two zonotopes can be computed by the concatenation of two lists.

Approximation of Reachable Sets
The paper [16] presents the computation of the approximation of reachable sets for the following

uncertain linear system given by:

x
′
(t) = Ax(t) + u(t), ∥ u(t) ∥≤ µ (9)

where A is an n× n matrix and ∥ . ∥ denotes the infinity norm on Rn (∥ x ∥= maxi=n
i=1 |xi|). For

a given set of possible initial values I , the reachable set of the system at the time t is

Φt(I) = y ∈ Rn : ∃x solution of (9), x(0) ∈ I ∧ x(t) = y.

Thus, the reachable set R, on the interval [t, t] from the set of initial values I can be computed as

R[t,t](I) =
∪

t∈[t,t]

Φt(I). (10)

As computation of reachable set is expensive, over-approximation of the reachable set is computed
using conservative approach as described in the paper [16]. The result of the equations is summarised
as below:

R[0,r](Z) ⊆ P + �(αr + βr)

where P = (
c+ erAc

2
, <

g1 + erAg1
2

, . . . ,
gp + erAgp

2
,
c− erAc

2
,
g1 − erAg1

2
, . . . ,

gp − erAgp
2

>)

is an approximated zonotopes for simplifying the computations, which is the convex hull of Z and

erAZ , with the bloating ball of radius αr = (er∥A∥ − 1 − r ∥A∥)supx∈Z ∥x∥ and βr =
er∥A∥ − 1

∥A∥
µ,

where �(βr) denotes the ball of center 0 and of radius βr for infinite norm.
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2.2.3 Ellipsoids

Defining Ellipsoids
An ellipsoid is the image of an Euclidean ball by an invertible linear transformation, A. They are

usually represented by their center c and a shape matrix Q = AAT [20] . If it is given a point c and a
positive definite matrix Q we can define the ellipsoid E(c,Q) of center c and shape matrix Q as:

E(c,Q) = {x : (x− c), Q−1(x− c)≤1} (11)

where Q is the identity matrix I , E(c, I) is the unit Euclidean ball of center c.

The Reachability Problem using Ellipsoids
Let us consider a linear equation,

ẋ = A(t)x+B(t)u, t0≤t≤t1 (12)

where x ∈ Rnis the state and u ∈ Rm is the control as described in [20]. The matrices A(t), B(t) are
continuous and the system is completely controllable. Moreover, the control u = u(t) is any measur-
able function restricted by hard bounds u(t) ∈ P (t), for almost all t, where P (t) is a nondegenerate
ellipsoid continuous in t, namely, P (t) = E(q(t), Q(t)), and

E(q(t), Q(t)) = {u : (u− q(t), Q−1(t)(u− q(t)) ≤ 1} (13)

with q(t) ∈ Rm (the center of the ellipsoid) and positive definite matrix function Q(t) ∈ Rm×m (the
matrix of the ellipsoid) continuous in t. The support function of the ellipsoid is given by [20],

ρ(l|E(q(t), Q(t))) = max{(l, x)|x ∈ E(q(t), Q(t))} = (l, q(t)) + (l, Q(t)l)1/2 (14)

The continuity of Q(t) means that its support function ρ(l|Q(t)) is continuous in t uniformly in l
with (l, l) ≤ 1.

Given position {t0, x0}, the reach set X(τ, t0, x
0) at time τ > t0 from this position is the set

X[τ ] = X(τ, t0, x
0) = {x[τ ]} of all states x[τ ] = x(τ, t0, x

0) reachable at time τ by system (12), with
x(t0) = x0, through all possible controls u that satisfy the constraint (13). The set-valued function
τ → X[τ ] = X(τ, t0, x

0) is known as the reach tube as stated in [20]. The reach setX(τ, t0, X
0) (at

time τ , from set X0 = X(t0)) is the union

X(τ, t0, X
0) =

∪
X(τ, t0, x

0)|x0 ∈ X0

The set-valued function τ → X[τ ] = X(τ, t0, X
0) is known as the reach tube from set X0 .

Efforts are on to derive a single equation that would produce a sub-optimal (w.r.t. volume) ellip-
soidal approximation to the exact reach set. However, it turns that ellipsoidal methods allow exact
representations of the reach sets and tubes for linear systems through parameterized families of both
external and internal ellipsoids, paper [20] explains the detailed approach.

2.2.4 Polytope

A polytope in Rn is a bounded intersection of a finite set of halfspaces P = {x|πT
i x ≤ di, x ∈ Rn}

where πi ∈ Rn, di ∈ R and i = 1, . . . ,m. Given Π = [π1 . . . πm]
T ∈ Rm×n, d = [d1d2...dm]

T ∈ Rm,
we use P (Π, d) as a short-hand notation for a polytope P = {x|Πx ≤ d} ⊆ Rn}.

Polytopes are closed under the following operations as mentioned in the paper [17] :

• Affine transformation: For A ∈ Rm×n, b ∈ Rm : AP + b = {y|y = Ax + b, x ∈ P ⊂ Rn} ⊆
Rm.
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• Intersection: P1 ∩ P2 = {x|x ∈ P1 ∧ x ∈ P2, P1 ⊆ Rn, P2 ⊆ Rn} ⊆ Rn.

• Minkowski sum: P1 ⊕ P2 = {y|y = x1 + x2, x1 ∈ P1 ⊆ Rn, x2 ∈ P2 ⊆ Rn}.

• Cartesian product: P1 ⊗ P2 = {[xT
1 , x

T
2 ]

T |x1 ∈ P1 ⊆ Rn, x2 ∈ P2 ⊆ Rm}.

Since every d − polytope in Rn is affinely equivalent to a d − polytope in Rd, it is convenient to
represent the d− polytope in high-order space as an affine transformation of the d− polytope in low-
order space. For polytope P ⊆ Rn satisfying P = ΦPw + γ where Φ ∈ Rn×d is full-column-rank,
γ ∈ Rn and Pw is a d−polytope inRd.we write P =< Φ, γ, Pw > and call it the affine representation
for P. We enforce the following restrictions on affine representations

Pw is full-dimensional, 0 ∈ Pw and supw∈Pw ||w|| ≤ 1.

Computation for operations on polytopes can be performed on their affine representations. For
affine systems, the reach set segments Reach([tk−1, tk]) are generally full-dimensional, even though
Xk−1 andXk may be low-dimensional. Therefore, low-dimensional polytopes are approximations of
the actual reach sets. Over-approximations can be computed from the low-dimensional polytopes by
“bloating” as described in details in the paper[17].

Reach Set Computation Using Affine Representations
For affine systems S, we consider the problem of computing Reach([0, tf ]) for the set of initial

states X0 =< Φ0, γ0, Pw >, which is a d − polytope. Note that the reach set Xk at a time tk is an
affine transformation of X0 as derived in the paper [17], which is given by:

Xk = φ0(A, tk)X0 + tkφ1(A, tk)b.
Xk =< φ0(A, tk)Φ0, φ0(A, tk)γ0 + tkφ1(A, tk)b, Pw > .

3 Issues/Research Scope in the area
Methods developed so far in the area for computation of reachable set are limited to a time bound
as the amount of time taken to compute all the reachable states of any hybrid systems is infeasible.
Moreover, this time bound is usually small for the same reason. A number of approaches are under
going in order to scale the limit of time bound by reducing the computation time in the process of
computing reachability set as mentioned in the paper [13]. In the previous section of this research
proposal only some of these methodologies have been summarised.

One of the well-know system tool available today which is consider to take less time then many
others with as many as 100 variables/dimension is SpaceEx (http://spaceex.imag.fr ) it uses the SFA
to compute reachable set as published in the paper [10]. (The tool uses the package GLPK out of
many available package for solving the Linear Programming Problem of the reachable computation
problem along with many other open source packages). It is observed that if we increase the number
of template directions or sides of the initial set in the Support Function Algorithm(SFA) it increases
the precision of reachability sets, which reduces the over-approximation error (leading to near actual
computation). We also observed that as the directions in SFA increases the time taken to compute also
increases. Thus, for complex hybrid systems with n-dimensional variables and with many directions,
the task of reachability set computation is infeasible as it might take days or months or even years to
compute for large time bound even with the best of the system tools available today. Moreover, in
order to guarantee the safeness (to the extent of time bound) of any hybrid systems we must check or
verify the system for large time bound.

We draw the conclusion that as we increase the number of directions we obtain precision in reach-
able states but the problem is the time taken for this increase directions with n-dimension and large
time bound it is unacceptable as the reachability computation may take day, months or even years.

The major issues can be broadly categorise into:
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1. Scaling the process of computing reachable sets for higher dimensional hybrid systems and for
large time bounds.

2. Reachability computation suffers from state space explosion problem as described above. There-
fore, to deal with the problem, appropriate abstractionmodel such as symbolic set representation
for hybrid systems is required.

4 Problem to be taken up
In this research we intend to explore the Support Function technique as a basic convex set represen-
tation, which is used as a symbolic representation of reachable sets. It is considered to be one of the
efficient technique to handle the state space explosion problem.

Our main focus in this research are :

1. To speed up the reachability computation process.

2. To achieve precision, some of the techniques may be :

• Speeding up the algorithm which enable large number of directions.
• Finding out efficient and appropriate directions for the given initial set.

5 Methodology/Expected outcome
A number of approaches would be explored and experimented elaborately to achieve speed-up and
precision in reachability sets computation, some of the methods along with there expected outcomes
are listed below:

5.1 Method 1: Implementing Parallel algorithms on multi-core CPUs:
5.1.1 Directions

Algorithm 1 performs, at each of itsN iterations, a linear transformation on a vector land the evaluation
of the support functions ρI and ρV . The global complexity of Algorithm 1 is therefore O(N(d2 +
CI + CV )) where CI and CV denote the complexity of evaluating ρI and ρV , respectively. Let us
remark that the complexity of Algorithm 1 is linear in the time horizonN and polynomial in d; which
is comparable to the complexity of the most competitive algorithms [14]. Then, the computation
of the tight over-approximations Ω1,Ω2, ...,ΩN defined as intersections of the reachable sets Ω of r
halfspaces has overall complexity of O(rN(d2 + CI + CV )).

The advantage of Algorithm 1 is that it can be trivially parallelized into all the r directions simulta-
neously to compute the support functions to improve the computation time. The support function can
be evaluated independently in the different directions 1, ..., r . Thus, running the reachability analysis
onp processors makes the overall complexity drops to: O(

⌈
r
p

⌉
N(d2+CI+CV )) there by can achieve

great speedup proportional to the number of processors.
Thus, with large number of processors available, greater speedup can be achieved easily. More-

over, with higher number of processors higher precision can easily be obtained by increasing the
number of r directions there by reducing over-approximation error.
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5.1.2 Iterations

We also observed that the complexity of the Algorithm 1, O(rN(d2 + CI + CV )) can be reduced by
parallelizing N iterations into p independent partitions, where p is the number of processors.

Thus, running the reachability analysis onp processors makes the overall complexity reduces to
O(r

⌈
N
p

⌉
(d2 + CI + CV )) .

Also with higher number of partitions the computation of reachable set is more precise, as for
every partition the computation process begins with the exact initial input set, where as in the classical
approach the process of computation of reachable set begins with just a single initial input set. In
the present classical approach there exists the problem of wrapping effect, though the authors in their
paper [14] have shown improvement by maintaining the factor τ as small as possible, which in turn
increases the sampling time (time steps). Since the computation of the reachable set for any given
location still begins with just a single initial input set so the process of consecutive convex hull of
the two discrete polyhedra and then bloating them with radius of unit ball through out the continuous
environment lead to wrapping effect.

Hence, with our approach of partitioning of the continuous environment into multiple partitions
not only increases the time bound for reachable set but also lead us with multiple exact initial input
set with multiple reduction in the wrapping effect, which will provide greater precision. With higher
number of partitions, more multiple exact initial input set thus greater precision can be achieved. Also,
as these partitions can be executed in parallel so reachability computation process will also speed up.

5.2 Method 2: An Efficient GPU implementation of the Simplex Method
We also observed that the complexity of the Algorithm 1 O(rN(d2 +CI +CV )), is large with higher
dimension of the hybrid systems, this is due to the large computation time involved in computing CI

and CV (as observed by profiler Valgrind-callgrind/kcachegrind). Thus, parallelizing the computa-
tion of CI and CV which involves solving the Linear Programming(LP) problem (Simplex Method),
great speedup can be achieved. We intend to use GPU programming approach to parallelize these
computation and expect to see improvement.

Thus, running complexity reduces to O(rN(d2 +
⌈
CI

p

⌉
+
⌈
CV

p

⌉
)). It is observed that (75-80)% of

the time is involved in computing CI and CV , thus reducing computation time for the term
⌈
CI

p

⌉
and⌈

CV

p

⌉
will greatly improve the whole computation process.

While exploring the GPU implementations of Simplex Method a number of optimising technique
will be explored. Some of these could be, multiple LP solver over single GPU by appropriate partitions
of SM cores over multiple LPs, optimising similar LPs over shared memory(also Cache memory if
possible), e.t.c.

5.3 Method 3: Algorithm using a mixed approach of GPUs and CPUs Paral-
leliging

A number of intermixing of the GPUs and CPUs can be experimented one such naive approach is
parallelizing the r number of directions using CPUs and accelerating the computation of CI and CV

over GPUs. Thus, the complexity of the algorithm 1,O(rN(d2+CI+CV )) reduces toO(
⌈
r
p

⌉
N(d2+⌈

CI

P

⌉
+
⌈
CV

P

⌉
)), where p is the number of CPU’s co-processors and P is the number of GPU cores.

Such amixed approachwill certainly improve the whole computation process by a great deal where
by we can not only achieve speedup but can also gain in precision.
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5.4 Method 4: Improvement on selection of Template-Directions
As mention in the paper [10] the Support Function of an input set S can be represented by over-
approximation of a polyhedron in a template directionsD = {ℓ1, ℓ2, ..., ℓr}. The template polyhedra,
is a polyhedra with faces whose normal vectors are given by D directions. A template polyhedron
PD ⊆ Rn is a polyhedron for which there exist coefficients b1, ..., bm ∈ R such that PD = {x ∈
Rn| ∧

li∈D
li.x ≤ bi}. A template polyhedron can be represented by its coefficients bi, which is useful

when working with sets of template polyhedra.
The template directions considered in the tool SpaceEx [10] are box (2n) directions, octagonal

(2n2) directions and m uniform directions (which is as evenly as possible distributed over the unit
sphere), where n is the dimensions of the hybrid systems.

We observed that selection of these template directions are not efficient as over-approximation
error is large when the template direction is not normal to the initial polyhedra’s (initial input set)
faces as shown in the figure (2).

(a) Maximum Over-
Approximation Error
due to template box
directions.

(b) Over-Approximation er-
ror eliminated due to appro-
priate selection of template
directions.

Figure 2: Figure with green colour is the original initial input set and the region filled with red colour
is the over-approximation error region due to selection of inappropriate template directions.

Thus, we proposed to select appropriate template directions so as to reduce the over-approximation
error as small as possible to obtain precision in computing reachable set. In other words we shall select
the template directions in such a way so as to represent a polyhedron that is as exact as that of the given
initial input set S. This approach will not only result in precise computation of reachable set but will
also helps us to speed-up the computation process by enabling us to choose only a limited number of
template directions.

To select the appropriate template directions we begin by taking any given template directions (say
box directions) and we take the directions one at a time and rotate each of this direction/vector by an
angle δ until we find the best direction that is normal to the face of the initial input polyhedron. The
notion best direction can be obtained by computing the support function over the initial input polyhe-
dron with the rotated directions which returns the distancesD1, D2, ..., Dn among these distances the
direction/vector producing the smallest distance is the best directions for the template directions.

The figure (2) above shows the rotation over two dimensional initial set for initial set with higher
dimension the paper[?] gives a general n-Dimensional rotations of a point x = (x1, x2, ..., xn) trans-
lated by a distance vector d = (d1, d2, ..., dn) results to x

′
= (x

′
1, x

′
2, ..., x

′
n) which can be computed

as x′
= x.T (d) and in an expanded matrix form in homogeneous coordinates it is denoted as
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[x
′

1 x
′

2 ... x
′

n 1] = [x1 x2 ... xn 1].


1 0 ... 0 0
0 1 ... 0 0
...

... . . . ...
...

0 0 ... 1 0
d1 d2 ... dn 1


At this point of time we only assume that each of the component of the distance vector d can be

computable independently for each direction/vector x and the best direction x′ can be obtainable form
the template directions. The feasibility of the problem will be determined in due course of time.

6 Experiments
Using the C++ programming language we shall develop tool to implement the existing sequential
algorithm to compute the reachable set of a hybrid systems provided with the initial input set and the
dynamics of the hybrid systems. We will then implement our various approaches as described in the
previous section and compare our results with the sequential algorithm to find out the improvement
with regards to time as well as precision in reachability analysis. We will test the results on various
Hybrid Systems models as available in the SpaceEx tool at http://spaceex.imag.fr such as Bouncing-
Ball, Timed-Bouncing-Ball, Circle and Helicopter Controller[10]. We will also test with some of the
benchmark model such Five Dimensional System[16] and Navigation[21], e.t.c.

We shall also be using a number of third party tools to speed up the process of development of
hybrid systems for reachability set computation. Third party tools boost, GLPK(GNU Linear Pro-
gramming Kit), e.t.c. We shall also compare the result with the variance of Linear Programming Kit
such a Gurobi to see the performance difference.

Various standard profiling tools such as Valgrind’s callgrind/kcachegrind and massif will also be
used in order to profile the CPU time and memory usages during the reachability set computation.

7 Proposed Plan of work
The whole work have been divided into various list of goals and tasks as listed below:

• Goal 1: Development of hybrid systems tool

– T1: Implement existing sequential algorithm using support function to compute reachable
set for Continuous Environment of Hybrid Systems

– T2: Using multi-core CPUs implement parallel (Directions) algorithm using support func-
tion to compute reachable set for Continuous Environment of Hybrid Systems

• Goal 2: Completing the development of hybrid systems tool

– T3: Implement sequential algorithm using support function to compute reachable set for
Discrete Transitions of Hybrid Systems

– T4: Using multi-core CPUs implement parallel (Iterations) algorithm using support func-
tion to compute reachable set for Continuous Environment of Hybrid Systems

• Goal 3: GPU implementation of the Simplex Method

– T5: Implementing GPU version of Simplex Method (Gimplex) and its variants.
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– T6: Implementing Gimplex method in the algorithm using support function to compute
reachable set for Continuous Environment of Hybrid Systems.

– T7: Parallel Algorithm using a mixed approach of GPUs and CPUs.

• Goal 4: Improvement on selection of Template-Directions.

– T8: Implement sequential approach to compute appropriate template directions as de-
scribed in the previous section.

– T9: Implement parallel approach for task T8.
– T10: Writing Thesis report.

The table 1 depicting the plan of work is as shown below.

Goal Task Sem–1 Sem–2 Sem–3 Sem–4 Sem–5 Sem–6

Goal 1 T1 X
T2 X

Goal 2 T3 X
T4 X

Goal 3
T5 X
T6 X X
T7 X

Goal 4
T8 X X
T9 X
T10 X

Table 1: Showing Work plan describing semester-wise breakup of research tasks.

8 Significance of Research
The goal of the research is to improve the state-of-the-art towards computation of reachability analysis
both in terms of speedup and precision there by making the task of reachability analysis feasible even
for complex higher dimensional models of hybrid systems for large time bounds within a finite amount
of time.
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