Programme Department Course CodeReletion of Technology in Electronics and Communication Engineering Electronics and Communication EngineeringYear of Regulation2018-19Cause Course CodeCourse NameName Course Course Course NameCourse NameName Course Course To understand of the Analysis and Synthesis Laboratory To understand the concepts of moment response of RLC circuits To understand the concepts of moment response of RLC circuits To understand the concepts of moment response of RLC circuits To understand the concepts of moment response of RLC circuits To understand the towo port network and network topology To understand the concepts of moment response of RLC circuits To understand the concepts of moment response of RLC circuits To understand the towo port network synthesisCO3Will develop understanding on electrical circuits CO3Vold develop understanding on two port network synthesisNoCO3PO1PO2PO3PO4PO3PO6PO7PO8PO9PO10PO11PO2PS02PS041CO3321332102CO33321332102CO33321332103CO33321332104CO43	A A A A A A A A A A A A A A A A A A A			National Institute of Technology Meghalaya An Institute of National Importance												CURRICULUM			
Department Corre CodeElectronics and Communication EngineeringCreditSemesterMarko DistributionCorre CodeCourse NameCredit StructureMarko DistributionMarko DistributionTotalRC 255Network Analysis and Synthesis Laboratory 	Pr	ogramm	ie]	Bachelor of Technology in Electronics and Communication Engineering								Year of Regulation					2018-19		
Course Code Course Name Correit Structure Marke Distruction Total KC 255 Network Analysis and Synthesis Laboratory 0 1 2 2 70 30 100 To understand the consets of lensiner response of RLC circuits To understand the consets of presenter response of RLC circuits COI Will develop understanding on electrical circuits COI Will develop understanding on ot carboration of the presenter response of RLC circuits COI Will develop understanding on the presenter response of RLC circuits COI Will develop understanding on the presenter response of RLC circuits COI Will develop understanding on the presenter response of RLC circuits COI Will develop understanding on the presenter response of RLC circuits COI Will develop understanding on the presenter response of RLC circuits COI Will develop understanding on the presenter response of RLC circuits COI Will develop understanding on the presenter response of RLC circuits COI SCI SCI <td>De</td> <td>epartmen</td> <td>nt I</td> <td colspan="8">Electronics and Communication Engineering</td> <td colspan="4">Semester</td> <td colspan="3">III</td>	De	epartmen	nt I	Electronics and Communication Engineering								Semester				III			
CodeCourse NameI.TPCCONTINUOSVIVATotalEC 255Network Analysis and Synthesis Laboratory01227030100Convestantio di cincuisTo undenstandi of enderstandi cincuisTo undenstandi of enderstandi cincuisCOIWill develop undenstandig on elevende synthesisTo undenstandi the voore pix optimisment of enderstanding on tervork and network upologyCOIWill develop understanding on two port networkCOITo undenstand of the voor network and network upologyCOIWill develop understanding on two port networkCOIWill develop understanding on two port networkNo.COAPOIPOIPOIPOIPOIPOIPOIPOI1COI3321332102CO23321332103CO3332133210SynthesisSynthesisSynthesisSynthesisOther Mapping with Program Outcomes (PO3Mapping with Program Outcomes (PO3Other Mapping with Program Outcomes (PO3SynthesisSynthesisSynthesis <t< td=""><td>Co</td><td>urse</td><td></td><td colspan="8">Credit</td><td colspan="6">ructure Marks Distribution</td><td></td></t<>	Co	urse		Credit								ructure Marks Distribution							
EC 285 Network Analysis and Synthesis Laboratory To understand the fundamentals of electrical circuits To understand the fundamentals of electrical circuits To understand the transforme response of RLC circuits To understand the two port network and network topology Objectives Other the two port network and network topology To understand the two port network and network topology To understand the two port network and network topology To understand network synthesis Output Correct CO2 Will develop understanding on network synthesis Mapping with PSOs No. CO3 To understand the two port network and network topology To understand the two port network and network topology To understand the two port network synthesis Mapping with PSOs CO3 Will develop understanding on network synthesis No. CO3 To understand the two port network and network topology To understand the two port network synthesis Mapping with PSOs POS POS <t< td=""><td>C</td><td>ode</td><td colspan="7">Course Name</td><td>L</td><td>Т</td><td>Р</td><td>С</td><td>CONTINUOS EVALUATION</td><td></td><td colspan="3">VIVA Total</td></t<>	C	ode	Course Name							L	Т	Р	С	CONTINUOS EVALUATION		VIVA Total			
To understand the fundamental of electrical circuits To understand the fundamental of electrical circuits Col Will develop understanding on electrical circuits Col Will develop understanding on electrical circuits To understand the nonepers of Tansieri response of RUC Circuits Col Will develop understanding on electrical circuits Col Will develop understanding on electrical circuits No. Cos To understand network synthesis Cou Coi Coi Coi Sci	EC	255	Network Analysis and Synthesis Laboratory012270										70		30	1	00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Course Objectives		To understand the fundamentals of electrical circuits CO1 Will develop understanding on e												ectrical circuits				
$ \begin{array}{ c c c c } \hline Course course course course course in a circuits. \\ \hline \begin{tity}{ c c c c c c } \hline \begin{tity}{ c c c c c c c c c c } \hline \begin{tity}{ c c c c c c c c c c c c c c c c c c c$			To und	erstand the	concepts o	of transient	response	of RLC c	ircuits		CO2	Will dev	velop und	erstanding on of	transient	esponse	of RLC	circuits	
Objectives To understand network synthesis Outcomes CO4 Will develop understanding on network synthesis No. CO5 Image: CO3 Image: CO3 Image: CO3 No. PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO10 PO12 PS01 PS02 PS03 PS04 1 CO1 3 3 2 1 3 - - 0 -			To und	erstand the	two port n	etwork and	d network	topology		Course	CO3	Will dev	elop und	erstanding on tw	o port net	work			
Image: Cost cost cost cost cost cost cost cost c			To und	erstand net	work synth	esis				Outcomes	CO4	Will dev	velop und	erstanding on ne	twork syn	thesis			
Col Mapping with Program Outcomes (POs) No. CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 PS04 1 CO 3 3 2 1 3 - - - - - 3 2 1 0 3 CO3 3 2 1 3 - - - - - 3 2 1 0 4 CO4 3 3 2 1 3 - - - - - 3 2 1 0 4 CO4 3 3 2 1 3 - - - - - 3 2 1 0 Verify principle of Superposition theorem with de and ac sources. Verify resonance phenomenon in RLC series circuit. In Verify resonance phenomenon in RLC parallel circuit. PO4 PO4 PO4 PO4 PO4 PO4 PO									-	CO5									
No. Cosperation Total Poil POI POI POI POI POI </td <td colspan="11">CO6</td> <td></td> <td colspan="4"></td>			CO6																
POI PO2 PO3 PO3 PO3 PO3 PO3 PO3 PO1 PO12 PO32 PO33 PO34 PO35 PO34 PO35 PO34 PO35 PO34 PO32 PO34 PO12 PO34 PO12 PO34 PO32 PO34 PO35 PO34 <td>No.</td> <td>COs</td> <td>DO1</td> <td>DO3</td> <td>DO3</td> <td>DO 4</td> <td>Mappir</td> <td>ng with Pro</td> <td>ogram O</td> <td>Putcomes (PC</td> <td>$\frac{1}{1}$</td> <td>DO10</td> <td>DO11</td> <td>DO12</td> <td></td> <td>lapping w</td> <td>rith PSO</td> <td>DCC 4</td>	No.	COs	DO1	DO3	DO3	DO 4	Mappir	ng with Pro	ogram O	Putcomes (PC	$\frac{1}{1}$	DO10	DO11	DO12		lapping w	rith PSO	DCC 4	
1 COL 3 3 2 1 3 1	1	COL	3	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POI0	POIT	POIZ	2	2	PS03	PS04	
1 CO2 0 0 1 0 1	2	CO^2	3	3	2	1	3	-	-	-	-	-	-	-	3	2	1	0	
Color Color <th< td=""><td>3</td><td>CO2</td><td>3</td><td>3</td><td>2</td><td>1</td><td>3</td><td>_</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>3</td><td>2</td><td>1</td><td>0</td></th<>	3	CO2	3	3	2	1	3	_	-			-			3	2	1	0	
No. SYLLABUS No. Content I Verify principle of Superposition theorem with dc and ac sources. II Verify Thevenin and Norton theorems in ac circuits. III Verify Maximum Power Transfer theorem in ac circuits. IV Verify Reciprocity and Tellegen's theorems. V Verify resonance phenomenon in RLC series circuit. VI Verify resonance phenomenon in RLC parallel circuit. VII Determination of self-inductance, mutual inductance and coupling co-efficient of a single-phase two winding transformer VIII Observe the transient response of current in RL and RC circuits with step voltage input. IX Observe the transient response of current in RLC circuits with step voltage input for under-damp, critically damp and over-damp cases. X Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters. XI Study LC network synthesis.	4	CO4	3	3	2	1	3	-	-	-	-	-	-	-	3	2	1	0	
No. Content Hours COs I Verify principle of Superposition theorem with dc and as sources. I Verify Thevenin and Norton theorems in ac circuits. II Verify Thevenin and Norton theorems in ac circuits. III Verify Maximum Power Transfer theorem in ac circuits. IV Verify Reciprocity and Tellegen's theorems. IV Verify resonance phenomenon in RLC series circuit. VI Verify resonance phenomenon in RLC parallel circuit. IV Verify resonance phenomenon in RLC parallel circuit. VII Determination of self-inductance, mutual inductance and coupling co-efficient of a single-phase two winding transformer representing a coupled circuit. 22 VIII Observe the transient response of current in RL and RC circuits with step voltage input. 22 IX coses. Observe the transient response of current in RLC circuits with step voltage input. X Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters. XI Study LC network synthesis.									S	SYLLABUS									
I Verify principle of Superposition theorem with de and ac sources. II Verify Thevenin and Norton theorems in ac circuits. III Verify Thevenin and Norton theorems in ac circuits. III Verify Maximum Power Transfer theorem in ac circuits. IV Verify Reciprocity and Tellegen's theorems. V Verify resonance phenomenon in RLC series circuit. VI Verify resonance phenomenon in RLC parallel circuit. VII Determination of self-inductance, mutual inductance and coupling co-efficient of a single-phase two winding transformer representing a coupled circuit. 22 VIII Observe the transient response of current in RL and RC circuits with step voltage input. IX cases. X Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters. XI Study LC network synthesis.	No.	Content														Hours COs			
XI Study LC network synthesis. Total Hours 22	I II IV V VI VII VII IX	Verify Thevenin and Norton theorems in ac circuits. Verify Maximum Power Transfer theorem in ac circuits. Verify Reciprocity and Tellegen's theorems. Verify resonance phenomenon in RLC series circuit. Verify resonance phenomenon in RLC parallel circuit. Determination of self-inductance, mutual inductance and coupling co-efficient of a single-phase two winding transformer representing a coupled circuit. III Observe the transient response of current in RL and RC circuits with step voltage input. Observe the transient response of current in RLC circuits with step voltage input for under-damp, critically damp and over-damp cases. Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters.													22		CO1, CO2, CO3		
Total Hours 22	XI	XI Study LC network synthesis.																	
							Т	otal Hour	S						22				

Essential Readings

- 1. V. Valkenberg, "Network Analysis", Prentice-Hall of India Pvt. Ltd, 3rd Edition, 2014.
- 2. F. F. Kuo, "Network Analysis and Synthesis", John Wiley & Sons, 2nd Edition, 2006.
- 3. C. L. Wadhwa, "Network Analysis and Synthesis", New Age International Publishers, 2nd Edition, 2007.

Supplementary Readings

- 1. D. R. Choudhary, "Networks and Systems", New Age International, 2nd Edition,, 2013.
- 2. A. Chakrabarti, "Circuit Theory: Analysis and Synthesis", Dhanpat Rai & Co., 6th Edition, 2014.
- 3. D. E. Scott, "An Introduction to Circuit analysis: A System Approach", 1st Edition McGraw Hill, 1987.