SYLLABUS FOR ADMISSIONS IN M.TECH PROGRAM IN DEPARTMENT OF CIVIL ENGINEERING

(SPECIALISATION: STRUCTURAL ENGINEERING)

UNDER INSTITUTE MODE

Engineering Mechanics: System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Frictions and its applications; Centre of mass; Free Vibrations of undamped SDOF system.

Solid Mechanics: Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, Transformation of stress; buckling of column, combined and direct bending stresses.

Structural Analysis: Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames;

Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.

Construction Materials and Management: Construction Materials: Structural Steel – Composition, material properties and behaviour; Concrete – Constituents, mix design, short-term and long-term properties.

Construction Management: Types of construction projects; Project planning and network analysis – PERT and CPM; Cost estimation.

Concrete Structures: Working stress and Limit state design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete beams.

Steel Structures: Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections – simple and eccentric, beam-column connections, plate girders and trusses; Concept of plastic analysis – beams and frames.

Soil Mechanics: Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability – one dimensional flow, Seepage through soils – two – dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition;

Compaction of soils; One- dimensional consolidation, time rate of consolidation; Shear Strength, Mohr's circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths.

Foundation Engineering: Sub-surface investigations – Drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories – Rankine and Coulomb; Stability of slopes –Finite and infinite slopes, Bishop's method; Stress distribution in soils – Boussinesq's theory; Pressure bulbs, Shallow foundations – Terzaghi's

and Meyerhoff's bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction.

Fluid Mechanics: Properties of fluids, fluid statics; Continuity, momentum and energy equations and their applications; Potential flow, Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth; Concept of lift and drag.

Hydraulics: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics – Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles.

Hydrology: Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface run-off models, groundwater hydrology – steady state well hydraulics and aquifers; Application of Darcy's Law.

Irrigation: Types of irrigation systems and methods; Crop water requirements – Duty, delta, evapo-transpiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures.

Water and Waste Water Quality and Treatment: Basics of water quality standards – Physical, chemical and biological parameters; Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment. Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications.

Air Pollution: Types of pollutants, their sources and impacts, air pollution control, air quality standards, Air quality Index and limits.

Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Transportation Infrastructure: Geometric design of highways – cross-sectional elements, sight distances, horizontal and vertical alignments. Geometric design of railway Track – Speed and Cant, Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design.

Highway Pavements: Highway materials – desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes.

Traffic Engineering: Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Traffic signs; Signal design by Webster's method; Types of intersections; Highway capacity. Principles of surveying; Errors and their adjustment;

Surveying: Maps – scale, coordinate system; Distance and angle measurement – Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and

vertical curves. Photogrammetry and Remote Sensing – Scale, flying height; Basics of remote sensing and GIS.

SYLLABUS FOR ADMISSIONS

IN

M.TECH PROGRAM

IN DEPARTMENT OF CIVIL ENGINEERING

(SPECIALISATION: ENVIRONMENTAL ENGINEERING)

UNDER INSTITUTE MODE

Construction Materials and Management: Construction Materials: Structural Steel – Composition, material properties and behaviour; Concrete – Constituents, mix design, short-term and long-term properties.

Construction Management: Types of construction projects; Project planning and network analysis – PERT and CPM; Cost estimation.

Soil Mechanics: Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability – one dimensional flow, Seepage through soils – two – dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition;

Compaction of soils; One- dimensional consolidation, time rate of consolidation; Shear Strength, Mohr's circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths.

Foundation Engineering: Sub-surface investigations – Drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories – Rankine and Coulomb; Stability of slopes –Finite and infinite slopes, Bishop's method; Stress distribution in soils – Boussinesq's theory; Pressure bulbs, Shallow foundations – Terzaghi's and Meyerhoff's bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction.

Hydraulics: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics – Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles.

Hydrology: Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface run-off models, groundwater hydrology – steady state well hydraulics and aquifers; Application of Darcy's Law.

Irrigation: Types of irrigation systems and methods; Crop water requirements – Duty, delta, evapo-transpiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures.

Water and Wastewater Quality and Treatment: Basics of water quality standards – Physical, chemical and biological parameters; Water treatment methods — screening, sedimentation with and without coagulation, filtration, desalination, disinfection; Water distribution and storage Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment. Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications. Water and wastewater quality parameters; Eutrophication and thermal stratification in lakes; River pollution - Oxygen sag curve. Sludge generation, processing and disposal methods; Sewage farming.

Point and non-point sources of wastewater; Population forecasting methods; Design of sewer and storm water sewers; Sewer appurtenances

Sources and characteristics of industrial effluents; Concept of Common Effluent Treatment Plants (CETP); Wastewater recycling and zero liquid discharge.

Kinetics and reactor design: Mass and energy balance, Order and rate of reactions, Batch reactors, Completely mixed flow reactors, Plug flow reactors.

Air and Noise Pollution

Structure of the atmosphere; Natural and anthropogenic sources of pollution; Atmospheric sources, sinks, transport; Indoor air pollution; Effects on health and environment; Air pollution: gases and particulate matter; Air quality standards; Primary and secondary pollutants; Criteria pollutants, ambient and source standards, air quality indices, visibility.

Particulate Pollutants: Measurement and control methods; Control of particulate air pollutants using gravitational settling chambers, cyclone separators, wet collectors, fabric filters (Baghouse filter), electrostatic precipitators (ESP).

Gaseous Pollutants: Measurement and control methods; Control of gaseous contaminants: absorption, adsorption, condensation and combustion; Control of sulphur oxides, nitrogen oxides, carbon monoxide, and hydrocarbons; Vapour-liquid and vapour-solid equilibria; Diffusion, Fick's law and interfacial mass transfer. Automotive emission controls, fuel quality, diesel particulate filters, catalytic convertors.

Air Quality Management: Point, line and area sources; Inventory; Influence of meteorology - wind rose diagrams, stability, mixing height, topography, dispersion modelling, monitoring.

Noise Pollution: Sources; Health effects; Standards; Measurement and control methods.

Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

Fundamentals of Environmental Chemistry: Covalent and ionic bonding; Chemical equations, concentration and activity; Structure and chemistry of organic molecules; Radioactivity of elements; Chemical equilibria; Thermodynamics and kinetics of chemical reactions.

Principles of Water Chemistry: Water quality parameters and their measurement; Acid-base equilibria; Buffer solution; Carbonate system; Solubility of gases in water; Complexation,

precipitation, and redox reactions; Inorganic and organic contaminants in water and their speciation.

Soil Chemistry: Organic matter, nitrogen, phosphorous, potassium, cation exchange capacity, base saturation, and sodium absorption ratio.

Atmospheric Chemistry: Composition of the atmosphere; Reactivity of trace substances in the atmosphere; Urban atmosphere—smog and particulate pollution; Chemistry of ozone formation; Chemistry of stratosphere.

Prokaryotic and Eukaryotic Microorganisms: Characteristics of diverse groups of microorganisms; Classification of microorganisms; Microbial diversity; Plant-microbe and soil-microbe interactions; Role of microorganisms in wastewater treatment, bioremediation and biogeochemical cycling.

Cell Chemistry and Cell Biology: Structure of proteins, nucleic acid (DNA & RNA), lipids and polysaccharides; Bonds in biomolecules; Stereoisomerism in biomolecules; Structure of cell; Structure and function of cytoplasmic membrane, cell wall, outer membrane, glycocalyx, chromosomes, endospores, storage products, mitochondria and chloroplasts.

Microbial Metabolism: Anabolism and catabolism; Phosphorylation; Glycolysis; TCA cycle; Electron transport chain; Fermentation; Anaerobic respiration; Energy balances; Enzymes and Enzyme kinetics.

Growth and Control of Microorganisms: Bacterial nutrition and growth; Specific growth rate and doubling time; Monod's model; Types of culture media; Batch and continuous culture; Effects of environmental factors on growth; Control of microbes using physical and chemical methods.

Microbiology and Health: Pathogens and modes of transmission; Indicator organisms; Quantification of coliforms using MPN and membrane filtration techniques.

Environmental Hydraulics: Concepts of mechanics; Properties of fluids; Pressure measurement; Hydrostatic force on surfaces; Buoyancy and flotation; Laminar and turbulent flow; Flow through pipes; Pipe networks; Boundary layer theory; Forces on immersed bodies; Flow measurement in channels and pipes; Kinematics of flow; Continuity, momentum and energy equations; Channel hydraulics - specific energy, critical flow, hydraulic jump, rapid and gradually varied flow; Design of lined and unlined channels.

Solid and Hazardous Waste Management

Integrated solid waste management; Waste hierarchy; Rules and regulations for solid waste management in India.

Municipal solid waste management: Sources, generation, characteristics, collection and transportation, waste processing and disposal (including reuse options, biological methods, energy recovery processes and landfilling).

Hazardous waste management: Characteristics, generation, fate of materials in the environment, treatment and disposal. Soil contamination and leaching of contaminants into groundwater.

Management of biomedical waste, plastic waste and E-waste: Sources, generation and characteristics; Waste management practices including storage, collection and transfer.

Transportation Infrastructure: Geometric design of highways – cross-sectional elements, sight distances, horizontal and vertical alignments. Geometric design of railway Track – Speed and Cant, Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design.

Highway Pavements: Highway materials – desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes.

Traffic Engineering: Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Traffic signs; Signal design by Webster's method; Types of intersections; Highway capacity. Principles of surveying; Errors and their adjustment;

Surveying: Maps – scale, coordinate system; Distance and angle measurement – Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves. Photogrammetry and Remote Sensing – Scale, flying height; Basics of remote sensing and GIS.

Syllabus for M.Tech. Entrance Exam, 2025

Computer Science and Engineering

Section 1: Digital Logic

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

Section 2: Computer Organization and Architecture

Machine instructions and addressing modes. ALU, data-path and control unit. Instruction pipelining, pipeline hazards. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).

Section 3: Programming and Data Structures

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

Section 4: Algorithms

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide-and-conquer. Graph traversals, minimum spanning trees, shortest paths.

Section 5: Theory of Computation

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and context-free languages, pumping lemma. Turing machines and undecidability.

Section 6: Compiler Design

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimisation, Data flow analyses: constant propagation, liveness analysis, common sub expression elimination.

Section 7: Operating System

System calls, processes, threads, inter-process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory. File systems.

Section 8: Databases

ER-model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

Section 9: Computer Networks

Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit-switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email.

EC

Electronics and Communication Engineering

Section 1: Engineering Mathematics

Linear Algebra: Vector space, basis, linear dependence and independence, matrix algebra, eigen values and eigen vectors, rank, solution of linear equations - existence and uniqueness.

Calculus: Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series.

Differential Equations: First order equations (linear and nonlinear), higher order linear differential equations, Cauchy's and Euler's equations, methods of solution using variation of parameters, complementary function and particular integral, partial differential equations, variable separable method, initial and boundary value problems.

Vector Analysis: Vectors in plane and space, vector operations, gradient, divergence and curl, Gauss's, Green's and Stokes' theorems.

Complex Analysis: Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, sequences, series, convergence tests, Taylor and Laurent series, residue theorem.

Probability and Statistics: Mean, median, mode, standard deviation, combinatorial probability, probability distributions, binomial distribution, Poisson distribution, exponential distribution, normal distribution, joint and conditional probability.

Section 2: Networks, Signals and Systems

Circuit Analysis: Node and mesh analysis, superposition, Thevenin's theorem, Norton's theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer. Time and frequency domain analysis of linear circuits: RL, RC and RLC circuits, solution of network equations using Laplace transform.

Linear 2-port network parameters, wye-delta transformation.

Continuous-time Signals: Fourier series and Fourier transform, sampling theorem and applications.

Discrete-time Signals: DTFT, DFT, z-transform, discrete-time processing of continuous-time signals. LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeroes, frequency response, group delay, phase delay.

Section 3: Electronic Devices

Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors.

Carrier Transport: Diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson and continuity equations.

P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell.

Section 4: Analog Circuits

Diode Circuits: Clipping, clamping and rectifiers.

BJT and MOSFET Amplifiers: Biasing, AC coupling, small signal analysis, frequency response. Current mirrors and differential amplifiers.

Op-amp Circuits: Amplifiers, summers, differentiators, integrators, active filters, Schmitt triggers and oscillators.

Section 5: Digital Circuits

Number Representations: Binary, integer and floating-point- numbers. Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders.

Sequential Circuits: Latches and flip-flops, counters, shift-registers, finite state machines, propagation delay, setup and hold time, critical path delay.

Data Converters: Sample and hold circuits, ADCs and DACs.

Semiconductor Memories: ROM, SRAM, DRAM.

Computer Organization: Machine instructions and addressing modes, ALU, data-path and control unit, instruction pipelining.

Section 6: Control Systems

Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.

Section 7: Communications

Random Processes: Auto correlation and power spectral density, properties of white noise, filtering of random signals through LTI systems.

Analog Communications: Amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, super heterodyne receivers.

Information Theory: Entropy, mutual information and channel capacity theorem.

Digital Communications: PCM, DPCM, digital modulation schemes (ASK, PSK, FSK, QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver, SNR and BER. Fundamentals of error correction, Hamming codes, CRC.

Section 8: Electromagnetics

Maxwell's Equations: Differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector.

Plane Waves and Properties: Reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth.

Transmission Lines: Equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart. Rectangular and circular waveguides, light propagation in optical fibers, dipole and monopole antennas, linear antenna arrays.

Department of Electrical Engineering

Syllabus for M.Tech Admission (Institute Mode) Autumn 2025 Semester

Specialization: Power & Energy Systems

Linear Algebra, Calculus, Differential equations, Complex variables, KCL, KVL, Node and Mesh analysis, Network Theorems, Transient response of dc and ac networks, two port networks, balanced three phase circuits, Electromagnetic Fields, Signals and Systems, Electromechanical energy conversion principles, AC and DC electrical machines - operation and characteristics, Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Economic Load Dispatch, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over-current, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady- state analysis of linear time invariant systems, Stability analysis using Routh- Hurwitz and Nyquist criteria, Bode plots, Root loci, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, Solution of state equations of LTI systems, Electrical and Electronic Measurements, Diodes, Operational amplifiers, Passive and active filters, combinatorial and sequential logic circuits, A/D and D/A converters, Static V-I characteristics and firing/gating circuits for Thyristor, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost Converters; Single and three- phase configuration of uncontrolled and controlled rectifiers and inverters.

SYLLABUS FOR ADMISSIONS IN M.TECH PROGRAM IN

DEPARTMENT OF MECHANICAL ENGINEERING (SPECIALISATION: FLUIDS AND THERMAL ENGINEERING)

UNDER INSTITUTE MODE

Fluid Mechanics

Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow.

Heat-Transfer

Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan-Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis

Thermodynamics

Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

Applications

Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines