

National Institute of Technology Meghalaya
An Institute of National Importance

CURRICULUM

Programme Master of Computer Applications Year of Regulation 2024-25

Department Computer Science and Engineering Semester III

Course
Code

Course Name Pre-Requisite
Credit Structure Marks Distribution

L T P C INT MID END Total

CA501 Software Engineering

3 0 0 3 50 50 100 200

 CO’s Statement Bloom’s Taxonomy

Course
Objectives

To introduce the Software Development life cycles Models

Course
Outcomes

CA501.1 Able to identify, formulate, and solve
complex engineering problems

Create

To analyse the software requirements CA501.2 Able to recognize ethical and professional
responsibilities in engineering situations

Understand

To introduce various design methods for software Development CA501.3 Able to analyze, design, verify, validate,
implement, apply, and maintain software
systems

Create

To develop an ability and skill to test software systems CA501.4 Able to develop software in one or more
significant application domain

Create

COs
Mapping with Program Outcomes (POs) Mapping with PSOs

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CA501.1 2 1 1

CA501.2 2 1 1 1 1 1 1 2 1 1

CA501.3 1 1 1 1 1 1 1 1

CA501.4 1 1 1 1 1 1 1 1 1 1

CA501 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.25 1.00 1.00

SYLLABUS

No. Content Hours COs

I

Introduction
Software process - software development life cycle models.

04

CA501.1

II

Software Requirement and Analysis

Techniques: feasibility analysis, requirements elicitation, validation, rapid prototyping, OO paradigms vs.
structured paradigm - OO analysis.

Case Study: Analyzing and documenting requirements for any software application.

06

CA501.2
CA501.4

III

Software Specifications

Specification document, specification qualities, uses, system modelling: context, interaction, structural,
behavioural, DFD, specification techniques using UML, ER diagrams, logic, algebraic specifications:
comparison of various techniques, formal specifications – model checking, introduction to binary decision
diagrams. Case Study: Designing the architecture for an e-commerce platform.

12

 CA501.2
 CA501.3

IV

Object Oriented Methodology

Introduction to objects, relationships, unified approach to modelling, use-case modelling, activity, state and
interaction diagrams, classification approaches, cohesion, coupling, reuse. Case studies - object oriented
paradigm, software design: architectural - distributed - data oriented design & object oriented design - real-
time systems design techniques.

10

CA501.2
CA501.3

V

Stepwise Refinement

Stepwise refinement, software versions and configuration control.

04

CA501.1
CA501.4

VI

Software Testing & Evolution

Verification & validation – non-execution based testing – software inspections, code reviews, code
walkthroughs– automated static analysis – Clean room software development – quality issues – execution
based testing – module test-case selection, testing process: black-box, white-box, unit, integration.

Case Study: Developing test cases and conducting quality assurance for any software application.

06

 CA501.3

CA501.4

Total Hours 42

Essential Readings

1. Roger S Pressman: “Software Engineering – A Practitioner’s Approach”, 7th Edition, McGraw-Hill, 2009.

2. Rajib Mall, “Fundamentals of Software Engineering”, 5th Edition, PHI, 2018.

3. Ian Sommerville: “Software Engineering”. 10th Edition, Pearson Education, 2017.

Supplementary Readings

1. S.L. Pfleeger, Software Engineering – Theory and Practice, 2nd Edition, Pearson Education, 2015.

2. Paul Ammann, and Jeff Offutt, “Introduction to Software Testing”, 2nd Edition, Cambridge University Press, 2016.

3. Eric Gamma, “Design Patterns: Elements of Reusable Object-Oriented Software”, 1st Edition, Addison-Wesley Longman Publishing, 1995.

