| A A STORY OF TECHNOLOGY | | 1 | | | CURRICULUM | | | | | | | | | | | | |-------------------------|---|---|---|--|---|--|--|--|---|--|---|--|---|-----------------------------------|-------------------|-------------------| | Prog | Programme Master of Computer Applications Academic Year of Regu | | | | | | of Regula | ation | on 2024-25 | | | | | | | | | Depa | artment | Com | puter Scie | ence and E | ngineering | <u> </u> | | | | | | Seme | ster | | , | V | | Cour | se | • | | Course | lama | | Dro | Dogujojt | | Credit S | Structure | | | Marks D | istributior | 1 | | Cod | | | | | | | | -Requisiti | E L | Т | Р | С | INT | MID | END | Total | | CA67 | 79 | Pattern Recognition and Applications | | | | | | | | 0 | 0 | 3 | 50 | 50 | 100 | 200 | | | re | To introduce the fundamentals of pattern recognition and its relevance to classical and modern problems To introduce the knowledge about state-of-the-art algorithms used | | | | | | | | CA679.1 | pattern c
recogniti
combina | State
xplain and
classificatio
on, and pa
tion techni
ummarize, | compare a
n, structur
ttern class
ques. | ifier | n
Understand | | | Cour
Object | se cla | in pattern recognition research To introduce Understand pattern recognition theories, such as Bayes classifier, linear discriminant analysis. | | | | | | | Course
Outcomes | CA679.2 | 2 research in the pattern reco
Able to apply performance of
methods for pattern recogn
critique comparisons of tech
in the research literature. | | rmance ev
n recogniti
ns of techn
ature. | aluation
on, and
iques made | Apply | | | | pr
wl
To | To provide an understanding of pattern recognition techniques in practical problems and a main objective is to be able to identify where, when and how pattern recognition can be applied. To provide knowledge regarding various application of pattern recognition using machine learning model. | | | | | | | | CA679.4 | Able to Implement simple patt | | lems
tern | ms Apply
rn | | | | | re | cogniti | on using m | nachine lea | irning mod | | | | 1 (DO | CA679.5 | | s, classifier
Il pattern re | | i. | Apply | D00- | | CO | S | PO1 | PO2 | PO3 | PO4 | Mapping
PO5 | PO6 | PO7 | tcomes (POs | s)
PO9 | PO10 | PO11 | PO12 | PSO1 | ping with
PSO2 | PSOs
PSO3 | | CA679 | | -01 | 1 | 2 | 2 | 3 | 2 | 101 | 100 | 1 | FO10 | FOIT | F012 | F301 | 1 | F 303 | | CA679 | | 2 | 1 | | 3 | | 1 | | | | | | | 2 | 1 | | | CA679 | 9.3 | 1 | 2 | 3 | 1 | 2 | | | | | | | | 1 | | 1 | | CA679 | 9.4 | 1 | | 1 | 2 | 2 | 3 | 1 | | | | | | 1 | 1 | | | CA679 | 9.5 | 1 | 1 | 1 | 3 | 3 | 1 | | | | | | | 1 | 1 | | | CA67 | 79 1 | 1.25 | 1.25 | 1.75 | 2.20 | 2.50 | 1.75 | 1.00 | | 1.00 | | | | 1.25 | 1.00 | 1.00 | | <u> </u> | | | | | | | | | LLABUS | | | | | Τ | | 00 | | No. | Overvie | ow of F | Pottorn old | accification | n and rag | roccion: In | | ntent | otical Datter | Poogni | tion Overvi | ow of | | Hours
6 | COs
CA679.1 | | | I | Pattern | Overview of Pattern classification and regression: Introduction to Statistical Pattern Recognition Overview of Pattern Classifiers: Bayesian decision making and Bayes Classifier, The Bayes Classifier for minimizing Risk, Estimating Bayes Error; Minimax and Neymann-Pearson classifiers | | | | | | | | 0.1079.1 | | | | | | | | II | Likeliho
Bayesia
formula
Mixturo
EM alg
Nonpa
estimat | ood es
an Est
ation of
e Dens
orithm
ramet
tion, N | timation of timation of timation extended in the same of | of different
examples, f
Bayesian
of EM Algo
of Nonpa
ty estima
etric estim | densities the expon estimates orithm: M arametric tion: Con ation,Par | , Bayesiai
ential fam
ixture Der
density es
vergence
zen Windo | n estimat
ily of der
asities, M
stimation
of EM alo
ows, near | ion of par
nsities and
Lestimation
gorithm; o
rest neigh | Estimation of ameters of odd ML estimation and EM activities of Notice 1 to t | ensity fun
es, Suffici
Igorithm, I
Ionparame
Is | etions, MA
ent Statisti
Convergen
etric densit | P estimatecs; Recurs | es,
sive | 8 | | A679.2 | | III | and connonline Fisher Overvi Genera Consist | nverge
er least
Linear
ew of
alizatio
tency of
exity of | ence proof
s-squares
Discrimir
statistica
n;PAC lea
of Empirio | f, Linear L
regressio
nant, Linea
al learning
arning fran
cal Risk M | east Squann, Logisticar Discrimes theory, mework, Cinimization | ares Regro
c Regressi
inant func
Empirica
Overview consist | ession; Lon;Statistions for I Risk Miof Statisticency of E | MS algori
stics of lea
multi-clas
inimizatio
cal Learni
Empirical l | nt Functions; ithm, AdaLin ast squares rescase; multon and VC-Ling Theory; Risk Minimiz Examples; V0 | E and LM
nethod; R
i-class log
Dimension
mpirical F
ation; VC | S algorithm
egularized
jistic regres
n: Learning
Risk Minimi
Dimension | n; General
Least Squ
ssion
and
zation, | | 10 | | A679.3,
A679.4 | | IV | Artifici Feedfo Repres Backpr RBF ne Suppo the opti nonline function | ial Neuserward
sentation
setworks
ort Vectimal hyear SVI
n, exar | Neural neonal abilitition in Pras; K-mear tor Mach yperplane Ms; Mercenples of S | etworks wites of feed
actice; Rans clusteri
ines and
actice; SVM for
er and pos
SVM learn | th Sigmoi
dforward r
dial Basis
ng algorit
Kernel b amulation v
sitive defir
ing; Over | fication and regression: Overview of Artificial Neural, Multilayer moidal activation functions; Backpropagation Algorithm; rd networks; Feedforward networks for Classification and Regression; asis Function Networks; Gaussian RBF networks; Learning Weights in brithm I based methods: Support Vector Machines Introduction, obtaining on with slack variables; nonlinear SVM classifiers; Kernel Functions for efinite Kernels; Support Vector Regression and ε-insensitive Loss verview of SMO and other algorithms for SVM; v -SVM and v- Definite Kernels; RKHS; Representer Theorem | | | | | | | | | | | | V | Feature Selection, Model assessment and cross-validation: Feature Selection and Dimensionality Reduction; Principal ComponentAnalysis; No Free Lunch Theorem; Model selection and model estimation; Bias-variance trade-off; Assessing Learnt classifiers; Cross Validation; Boosting and Classifier ensembles Bootstrap, Bagging and Boosting; Classifier Ensembles; AdaBoost, Risk minimization view of AdaBoost | 8 | CA679.3,
CA679.4,
CA679.5 | |----------|---|----|---------------------------------| | | Total Hours | 42 | | | Esse | ntial Readings | | | | 1. | R.O.Duda, P.E. Hart and D.G. Stork, "Pattern Classification", John Wiley, 2002. | | | | 2. | C.M.Bishop, "Neural Networks and Pattern Recognition", Oxford University Press (Indian Edition), 2003. | | | |
Supp | lementary Readings | | | | 1. | C.M.Bishop, "Pattern Recognition and Machine Learning", Springer, 2006. | | |