National Institute of Technology Meghalaya CURRICULUM An Institute of National Importance **Master of Technology** Year of Regulation 2025 Programme Department **Civil Engineering** Semester Credit Structure Marks Distribution Course Pre-requisite Course Name Code L C INT **MID END** Total **Sustainable Energy Generation** 0 **NIL** 3 0 3 **50 50** 100 200 **CE 537** and its Use Able to identify and explain various sources of sustainable To understand the principles and technologies of sustainable energy generation. CO1 and renewable energy.. To explore the environmental, economic, and social Able to Analyze the environmental impacts and benefits of implications of different renewable energy systems. CO₂ sustainable energy generation. To analyze energy conversion efficiency, resource potential, Able to evaluate the efficiency and feasibility of different and sustainability of renewable energy systems. CO3 renewable energy technologies. To evaluate the integration of sustainable energy into Course Course Able to design energy systems considering sustainability, existing infrastructure and policies. Objectives Outcomes local resources, and technological options. To develop skills to design and assess sustainable energy systems for environmental applications. Able to assess policies, regulations, and incentives related to renewable energy development. **SYLLABUS** Content Hours COs No. **Introduction to Sustainable Energy:** Overview of global and Indian energy demand and supply; Concept of sustainability and clean energy; Classification of energy sources: renewable vs non-renewable; Climate change, carbon emissions, and energy 6 CO1, CO2 challenges. Solar Energy: Solar radiation and its measurement; Photovoltaic systems: working, components, and performance; Solar thermal systems: collectors, applications; Grid-connected and off-grid systems. CO2, CO3, 6 CO4 Wind and Hydro Power: Wind energy fundamentals, wind turbine types, power curve; Wind farm design and energy CO2, CO3, generation; Small hydro and micro-hydro power plants; Site selection and environmental impact. 5 CO4 Bioenergy and Waste-to-Energy: Biomass resources and classification; Biogas generation and applications; Biofuels: IV biodiesel, ethanol, algae-based fuels; Waste-to-energy technologies: incineration, gasification, anaerobic digestion CO2, CO3, 7 CO₄ **Energy Efficiency and Smart Systems:** Energy conservation principles and audit techniques; Energy efficiency in buildings and industries; Smart grids, net metering, and demand-side management; Energy storage technologies (battery, pumped hydro, CO4, CO5 9 Policy, Economics, and Life Cycle Assessment: National Renewable Energy Mission and MNRE initiatives; Renewable Energy Service Companies (RESCOs) and financing models; Life Cycle Assessment (LCA) of energy systems; Case studies: solar parks, wind farms, bioenergy projects in India. 9 CO4, CO5

Essential Readings

- 1. **Boyle, G.** *Renewable Energy: Power for a Sustainable Future*, Oxford University Press, 2012
- 2. **Twidell, J. & Weir, T.** *Renewable Energy Resources*, Routledge, 2019.
- 3. Kothari, D.P., Singal, K.C., & Ranjan, R. Renewable Energy Sources and Emerging Technologies, PHI Learning, 2011

Total Hours

Supplementary Readings

1. MNRE and IREDA Guidelines and Reports (Government of India), 2022.

42