

National Institute of Technology Meghalaya

An Institute of National Importance

CURRICULUM

.« OF TECHNA																			
P	rogram	e Bachelor of Technology (All branches)									Year of Regul			gulation	ulation		2018		
D	epartme	ent Cnemistry								Cradit Structure			Semester			I/II			
	urse ode	Course Name								T		ructure	C	INIT	Marks D	END	Total		
CV 101		Chemistry								2	1	P 0	3	50	50	100	200		
	101	To provide the students with some knowledge of coordination chemistry and properties and applications of co-ordinations								2	CO1	Able to	acquirekn	owledge	about coordination chemistry,				
		compo To pro corrosi	ounds wide	fundame reaction of	ntal unde	rstanding polymer	on electro	ochemistry nd import	y, tance of		CO2	Able to acquire knowledge about electrochemical analysis and identification of application to engineering							
	·	green o	chem	nistry		1 ,		1				problems (energy storage devices and corrosion) Able to acquire knowledge about the basics chemical line theories of reaction rates and their applications							
Co Obje	urse ctives	To develop the student's ability to apply knowledge of different instrumental methods for chemical analysis								Outcomes	C03	in catalysis Able to acquireknowledge about various instrumental							
											C04	techniques and their applications in chemical analysis Able to acquire knowledge about different types (solid, liquid and gases) of fuels and its extraction process and							
		To intr industr	oduc ial a	ce the stud pplication	dents with 1s of diffe	the conce rent poly	ept, classi ners	fications a	ınd		CO6	their applications Able to acquire knowledge about the concepts of polymers, polymerization processes and their industrial applications							
							Manning	with Prog	ram Out	comes (POs))	applications			Ma	PSOs			
No.	COs	PO)1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	, PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
1	CO1	2		0	0	0	0	0	0	0	0	0	0	0					
2	CO2	3		0	0	0	0	0	0	0	0	0	0	0					
3	CO3	2		0	0	0	0	0	0	0	0	0	0	0					
4	CO4	3		0	0	0	0	0	0	0	0	0	0	0					
5	C05	3		0	0	0	0	0	0	0	0	0	0	0					
6	CO6	2		0	0	0	0	0	0 CVLI		0	0	0	0					
SYLLABUS No. Content Human															COs				
I	Doubl crystal	Double salts, coordination compounds, different types Werner's theory of coordination compounds, valance bond and crystal field theory of co-ordination compounds, optical and magnetic properties, isomerism in co-ordination compounds													05 CO1		CO1		
II	Conductance of electrolytic solutions, effect of temperature and concentration, conductometric titrations Redox reactions, electrode potential, Nernst equation, factors affecting the emf of half cells, Latimer diagram, hydrogen half-cell, calomel half-cell, quinhydrone half-cell. Introduction to fuel cell.														07	07 CO2			
III	Galva	Galvanic series, electrochemical theory, galvanic corrosion, crevice corrosion and pitting corrosion, control of corrosion.													04 CO2		CO2		
IV	Theore	etical an	nd ex	periment	al pH-met	ry, potent	iometry a	nd colorin	netry.						04	04 CO4			
v	Princip	pals and	l app	lications	of green c	hemistry									01	1 CO3			
VI	Variou period Activa	Various factors affecting the rate of reactions, integrated rate laws for zero, first and second order reactions, half-life periods Activation energy, theories of reaction rates, catalysis, kinetics of homogeneous, heterogeneous and enzyme catalysis														06 CO3			
VII	Solid, numbe	Solid, liquid and gaseous fuels, coal analysis, classification of coal, anti-knocking agents, octane number and cetane number, aviation fuel and biodiesel.														04 CO5			
VIII	Conce proces	pts, clas s, natur	ssific al ru	ation, strubber and	uctures, ai its propert	nd molecu ties, vulca	llar weigh nization c	ts of polyr of rubber, s	ners, me synthesis	echanism and s and applica	l kinetics tions of v	of variou arious inc	is polymer lustrial po	rization lymers.	05	05 CO6			
			_				Tota	l Hours							36				
Esser	ntial Re	adings												·					
1.	P. C. J S. S. I	Jain and Dara, "A	M Tex	Jain, "Eng t Book o	gineering f Enginee	Chemistr ring Cher	y", Dhanp nistry", S.	at Rai Pul . Chand &	olication Co. Ltd	ı Co. I.									
Supp	lement	ary Rea	ading	gs	E		TT-11	De al C											
1	R Go	Fontan	a, "C	orrosion	Themister	ng", McC	Jraw-Hill	BOOK COR	npany.										
3	B. K	Parall, Sharma	Engi	ngineering	2 Chemist	rv". Krist	ina Prakas	shan Medi	a(P) It	d.									
5			, .	00-1 mg	, .	, , 1110													