National Institute of Technology Meghalaya

CURRICULUM

Programm		me Bachelor of Technology in Mechanical Engineering									Year of Regulation				2018 V	
De	epartme	ent N	Aechanical I	ngineerir	ng							Seme	ester			
ours	e Code			Cou	irse Name						tructure	_			stribution	
		Course manie							L	Т	Р	C	INT	MID	END	Tota
ME	305	Machine Design-I							3	1	0	4	50	50	100	200
		To introduce design of machine elements								Demonstrate the basic knowledge of d CO1 methodologies, different consideration ergonomic, manufacturing, safety etc.) (Understanding)						
Course Objectives		To teach		CO2	Demonstrate knowledge on basic machine elements (Understanding)											
		To develop an ability and skill to design against static and dynamic load							CO3	Solve problems related to machine elements which withstand the loads and deformations (static and fluctuating), while considering constraints (Applying)						
		To deve like sprij		CO4	Analyze and quantify failure modes of mechanical par applying different types of stress and strain analysis (Analyzing)											
		riveted,		CO5	Evaluate a design problem successfully, taking decision when there is no unique answer (Evaluate)											
NIC	<u> </u>	Mapping with Program Outcomes (POs)										apping with PSOs				
No.	COs	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
1	CO1	2	0	0	0	0	0	0	0	0	0	0	0	3	0	0
2	CO2	3	0	0	0	0	0	0	0	0	0	0	0	2 3	0	0
3	CO3	3	0	0	0	0	0	0	0	0	0	0	0	3	1	0
4	CO4	0	0	3	0	0	0	0	0	0	0	0	0	3	1	0
5	CO5	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0
6	CO6	0	0	0	U	U	U	SYLLA	_	U	U	Ū	v	Ū		
NO.							Content	JILLA						Hours		COs
	Introduction Engineering Design Process, Factors influencing Design, Engineering Materials, Manufacturing Considerations in Design – Limits, Fits and Tolerances											esign –	04	CO1		
	Design against Static Loading Stress Strains Relationship, Theories of Failure, Stress Concentration Factor, Concept of Factor of Safety												06	CO2 CO3 CO4		
111	Design against Fatigue Loading Variable load - basic concept; load or stress variations- Cyclic stresses/strains - materials response and the origin of fatigue failure. Stress life relations; Factors influencing fatigue and endurance strength - Effect of stress concentration and fatigue stress concentration. Design approach to fatigue, design of members under combined loading conditions.												fatigue fatigue	08	CO2 CO3 CO4	
V	Design of Shafts, Keys and Couplings Design of transmission shafts subjected to bending, twisting and combined bending twisting and axial loading for strength and rigidity. Design against fatigue loading. Design of Keys. Design of Couplings – Rigid and Flexible.													08	CO2 CO3 CO4 CO5	
v	Design of Spring Mechanical Springs, Spring Materials, Design of Helical Springs against static and fluctuating loads. Design of Leaf Springs.													06	CO2 CO4	
VI	Design of Belts and Chains Flat and V-belt, Construction, Analysis of Belt tensions, Selection of Flat and V-belts. Chain drives.													06		
VII	Design of Joints Threaded Joints – types of screw threads. Design o Bolted Joints under static and fluctuating load. Eccentrically loaded bolted joints. Welded Joints type of welded joints, welding symbol and weld symbol and their representation, strength of welded joints subjected to static and fluctuating loads. Eccentrically loaded welded joints. Riveted joints – types of joints, design of riveted joints for structure. Design of Cotter and Knuckle joint.													10	CO4 CO5	
	Ale 1 P	adir ==				Tota	Hours							48		
	ntial Re	and the second second second second	anical Engin	eering De	sign" Ma	Graw Hill										
	-		anical Engin													
		ary Read	and provide the second term of the second term	the Dieme												
			Cheatham, '	Mechanic	al Analysi	s and Des	sign", Prer	ntice Hal	1.							
, A.			,			, and C. V	· ·									

0