

National Institute of Technology Meghalaya An Institute of National Importance

CURRICULUM

	ogramm											-	2018				
De	partme	ent Mechanical Engineering Semester Credit Structure												V			
Course Code ME 351		Course Name Non-Traditional Machining Lab									Continuo			Marks Distribution			
										Т 0	P	C	evaluation		Quiz	Tota 100	
									0	0	2 Explain	about tra	70 ditional and no	n_traditional			
Course Objectives		This course familiarizes students with the use of various non-								CO1	Explain about traditional and non-traditional machining process Demonstrate and explain the working principle of Die-sinking EDM, Powder material compact machine and surface roughnes tester (Understanding). Design and fabrication of green compact tool using powder materials with compact machine for reverse- EDM process (Apply).						
		To develop the student's ability to operate the advanced engineering equipment such as Die-sinking EDM, Wire-EDM, Micro-machining set up, surface roughness tester etc.							Course Outcomes	CO2	Application of Reverse-EDM process for surface modification by material deposition process using Die-sinking EDM (Apply). Demonstrate and explain the working principle of Wire-EDM process (Understanding). Analyze the surface roughness and burr formation of the machine product using single pass with WEDM process (Apply).						
										CO3							
										CO4	Apply the multi-pass process to analyze the surface roughness and burr formation of the machine product with WEDM process (Apply).						
										CO5	Demonstrate and explain the working principle of micro-EDM process and analyze effect of different input parameters. (Understanding / Apply)						
No.	COs	Mapping with Program C								,	_	_		1	ping with F		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO10	PO11	PO12	PSO1	PSO2	PSC	
1 2	CO1 CO2	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0	
2	CO2	3	0	0	0	0	0	0	0	0	0	0	0	3	0	0	
4	CO4	3	0	0	0	2	0	0	0	0	0	0	0	3	0	0	
5	CO5	3	2	0	0	0	0	0	0	0	0	0	0	3	0	0	
L		SYLLABUS											I				
No.		Content												Hours CC		COs	
I		onstrate and explain working principle of Die-sinking EDM, Wire-EDM process, Powder material compact nine and Micro-machining process. (NTM-1)												02 All CO		l COs	
II	Design	gn and fabrication of green compact tool using powder materials. (NTM-2)												02	02 CO1		
111		lication of Reverse-EDM process for surface modification by material deposition process using Die-sinking EDM plication). Analyze the surface pattern and finishing after material deposition. (NTM-3)												02 CO2		CO2	
IV		hining of cylindrical/rectangular block using single pass wire electro discharge machining (WEDM) process. lyze the surface finish and burr formation of the machined product. Repeat the experiment at least for 3 times. M-4)												02 CO1, CO		1, CO3	
V		nining of cylindrical/rectangular block using multi-pass (2 pass) with WEDM process. Analyse the surface finish purr formation of the machined product. Repeat the experiment at least for 3 times. (NTM-5)												02 CO4		CO4	
VI		hining of cylindrical/rectangular block using multi-pass (3 pass) with WEDM process. Analyse the surface finish burr formation of the machined product. Repeat the experiment at least for 3 times. (NTM-6)													02 CO4		
VII	Makin (NTM-	-	cro featur	res using	micro-EI	DM and	investigat	ing the	e effect of	lifferen	t input p	parameters	s on MRR.	02 CO1, C		1, CO5	
	Total Hours =													14			