Dr. Gitish K. Dutta - Synthesis and application of organic materials.
Dr. Atanu Singha Roy:
Biophysical Chemistry
Protein-Ligand interaction at molecular level: Proteins have complex structures, consisting of different amino acids. They posses different functional roles based on the amino acid sequence. The protein molecules can form complex with other small drug like molecules via non-covalent interactions that may leads to change in structural and functional aspects of the proteins. The dietary polyphenols are the important class of components having lots of biological and physiological activities e.g. anti-oxidant, anti-inflammatory, anti-diabetic, anti-viral etc. Their interactions with different biological targets e.g. serum albumins, lysozyme and hemoglobin are significant on the background of drug transportation and delivery.
The binding of dietary polyphenols with the proteins are studied with the help of various biophysical techniques: absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and MALDI-ToF analyses. Molecular docking studies (using Autodock tools) are also conducted to find out the exact binding location of small molecules in the biomacromolecules. (Molecular BioSystems 12, 2016, 1687-1701; Journal of Inclusion Phenomena and Macrocyclic Chemistry 84, 2016, 21-34; Molecular BioSystems 12, 2016, 2818-2833)
Protein Denaturation/renaturation Studies: The unfolding and refolding phenomena of protein structures are also investigated using steady state fluorescence spectroscopy and lifetime measurements. (Molecular Biology Reports 40, 2013, 3239-3253; Journal of Luminescence 145, 2014, 741-751, 2014; Journal of Pharmaceutical Analysis 6, 2016, 256-267)
Glycation of proteins and binding with dietary polyphenols: The proteins are modified by reaction with different reducing sugars via non-enzymatic pathways in different stages of diabetes and glycemia. The glycated analogue is characterized by UV-vis, fluorescence, CD and MALDI-ToF techniques. Currently we are investigating the effects of glycation on the binding of dietary polyphenols with serum albumins. (Journal of Inclusion Phenomena and Macrocyclic Chemistry 85, 2016, 193-202; Journal of Biomolecular Structure & Dynamics 34, 2016, 1911-1918)
DNA-Ligand binding and DNA damaging experiments: The DNA binding and damaging studies of different metal complexes are underway. Various biophysical techniques will be used to analyze the same. (Molecular BioSystems 12, 2016, 1687-1701; Molecular BioSystems 12, 2016, 2818-2833).
Dr. Naba Kamal Nath:
(a) Novel Solid State Forms of Pharmaceuticals: Solid state forms of pharmaceuticals include polymorphs (same chemical species with different crystal structures), solvate/hydrate (molecular solid which includes solvent/water in its crystal lattice), salt (multi-component ionic solid), cocrystal (multi-component molecular solid), amorphous form, mixed crystal etc. We are interested in discovering and developing novel solid state forms of pharmaceutically active compounds as each of these solid state forms can modulate physico-chemical properties of drug substances and are therefore suitable candidates for new/alternate oral solid dosage forms.
(b) Stimuli Responsive Materials: Materials capable of responding under the influence of external stimuli (such as heat, light, pH gradient, moisture, mechanical force etc.) by changing its shape, size, colour, or by displaying various mechanical movements such as bending, curling, jumping (photosalient effect, thermosalient effect), twisting etc. have immense importance as material for energy conversion. We are interested in the synthesis, characterization, mechanistic studies and kinematic analysis of such stimuli responsive crystalline, liquid crystalline, polymeric and gel materials.